新闻资讯
NEWS
/
/
/
厌氧氨氧化—城市主流污水处理工艺的前世今生

厌氧氨氧化—城市主流污水处理工艺的前世今生

  • 分类:行业动态
  • 作者:勤诚创业
  • 来源:北极星水处理网
  • 发布时间:2022-04-10 08:05
  • 访问量:

【概要描述】厌氧氨氧化(Anammox)技术作为近年来新兴的自养脱氮工艺,具有无需外加碳源、低污泥产量、低能耗等优势。文中总结了厌氧氨氧化应用于主流污水处理工艺时面临的困难挑战,分析了厌氧氨氧化处理污水的最新研究进展,阐述了厌氧氨氧化菌(AnAOB)的截留、硝酸盐氧化菌(NOB)的抑制、有机物的不利影响等问题的具体解决方案。在节能减排的时代要求下,为实现能源回用、资源回收的废水处理模式,提出了可能实现能源自给的工艺组合,为实现主流厌氧氨氧化工艺工程化应用提供科学借鉴。 研究亮点 1、总结分析短程硝化厌氧氨氧化在主流污水应用中难以实现的关键问题; 2、分析了造成这些关键问题的原因,并针对每一个问题阐述了学者们所作出的研究进展; 3、分析了厌氧氨氧化工艺应用于实际主流污水的技术路线,从实际工程出发探究短程硝化厌氧氨氧化实际应用的可行性。 近些年来,城市污水中氮素污染物的去除以及越来越严格的氮排放标准已成为困扰人们的一大难题。目前,通过硝化/反硝化的常规生物脱氮(BNR)被广泛应用,并作为许多生活和工业废水处理设施实现脱氮的有效方法,但该过程需要消耗大量的能源。城市污水中的有机物含有大量的化学能,若能将有机物进行产能回收则可实现污水厂能源自给自足,将污水处理厂建成集水资源再生、能源回用及资源回收的多功能可持续水厂成为全球污水处理厂的发展目标。基于厌氧氨氧化工艺的新型生物脱氮技术已成为一种有吸引力的能源、资源高效管理的解决方案。 厌氧氨氧化工艺是荷兰代尔夫特大学的Mulder和Van de Graaf在一个中试反硝化流化床中发现的一种新型经济高效的生物脱氮技术。其基本原理是在厌氧条件下厌氧氨氧化菌(anaerobic ammoniumoxidizing bacteria,AnAOB)利用亚硝态氮作为电子受体,将氨氮氧化成N2的自养生物转化过程。与常规的生物脱氮方法相比,其优势在于不需要曝气,充分降低充氧电耗;无需有机碳源,节约了外加碳源所需的运行费用;不涉及异养型的反硝化菌,降低了剩余污泥产量。厌氧氨氧化对反应底物浓度有严格的要求(理论比为氨氮前置部分亚硝化技术生成为厌氧氨氧化的发生提供了前提,即部分亚硝化-厌氧氨氧化(partial nitrification-anammox,PN/A)。全球范围内,厌氧氨氧化污水处理工程已达百余座,已建成的厌氧氨氧化工程大多应用于中温、高氨氮废水的处理,例如污泥消化液、垃圾渗滤液、焦化废水、饲料加工废水等,但主流PN/A污水处理工程仅有新加坡樟宜污水厂、奥地利Strass污水厂。尽管已经进行了广泛的研究,但实现PN/A在城市污水中的应用仍是一个很大的挑战。目前大规模应用的报道较少,仍需要对厌氧氨氧化进行大量研究,从而提出可操作的具体应用方案。 1 污水主流处理工艺厌氧氨氧化的挑战 ·AnAOB的倍增时间长,在最适温度下典型倍增时间大约为11 d,远大于氨氧化细菌(AOB)(0.3~1.5 d)和亚硝酸盐氧化菌(NOB)(0.5~1.8 d)的倍增时间,较慢的生长速率导致厌氧氨氧化的启动时间比较长。其次与城市污水的不利特征有关,包括低温、高C/N(4~12)、含量低且变化的氨氮(30~100 mg/L)、高水力负荷。微生物的代谢活性往往受温度的影响较大。Tomaszewski等研究结果表明,35 ℃是AnAOB生物代谢最快,繁殖周期最短的最适温度。温度从30 ℃降到10 ℃时,AnAOB活性降低约10倍。在温度小于20 ℃时,特别是在小于15 ℃时,会出现脱氮效率低、出水质量差、不能保持长期稳定的脱氮情况。低温同时降低了AOB和NOB的活性和生长速度,但对AOB的影响比NOB更大,在温度低于20 ℃时,差异越大。处于弱势的AnAOB对亚硝酸盐的竞争力弱于NOB,导致主流条件下NOB的抑制更加困难。城市生活污水的高C/N可能导致异养细菌的繁殖,降低AOB及AnAOB的竞争优势。根据Monod方程,低氨氮浓度也降低了AnAOB的生长速率和活性。较短的水力停留时间(HRT)使得AnAOB的保留更具挑战性。考虑到主流废水中含氮量变化、高出水水质的要求,以较低的成本去除厌氧氨氧化反应所产生的硝酸盐仍需解决。 尽管存在以上这些挑战,但Cheng等探究了主流条件下PN/A的脱氮性能,预设温度为25℃,后降至15 ℃的方法,系统最高脱氮效率达到(7.0±0.3) kg/(m3·d),是迄今为止最高脱氮效率的主流PN/A。在纽约一污水处理厂中,发现其缺氧段搅拌桨上自发富集了大量的AnAOB,该污水处理厂脱氮性能也明显提升,这两则案例表明了厌氧氨氧化应用于主流污水处理系统的可行性。厌氧氨氧化反应所需的代谢基质为和城市污水中的氮素以氨氮和有机氮形式存在,需要经过氨化作用产生,因此,实现的稳定积累是厌氧氨氧化应用于主流城市污水的难点。将硝化反应控制在第一阶段,AOB将氨氮氧化为使AOB处于优势地位,形成亚硝酸盐大量积累的短程硝化技术较为成熟并被广泛采用;同时短程反硝化提供的技术相较短程硝化更易控制,日益受到学者们的关注。 2 PN/A 为了促进PN/A在主流污水处理工艺中的实际应用,根据国内外学者的研究进行总结,可以从以下2个方面进行:AOB、AnAOB的有效保留,NOB的抑制。 2.1 生物量的控制 主流条件降低了AnAOB、AOB的活性和生长速度,同时使NOB和异养菌难以控制。AnAOB是PN/A工艺的基本组成部分,但其生长缓慢,易受低温和DO的影响,这就要求PN/A系统具备良好的生物保留能力,实现功能菌种的大量持留与富集,克服低温、高C/N、高水力负荷、短HRT等不利条件,维持PN/A系统长期稳定运行所需要的生物量。 生物膜和颗粒系统比悬浮自由生长系统有更佳的生物截留效果。AnAOB优先选择生长在生物膜、聚集体中,固着生长方式使它们能够抵抗不利的环境条件。Zhang等研究表明,在生物膜或聚集体较厚的反应器应对低温和积累耐受性能较强,有利于减少生物损失。卢欣欣等采用移动床生物膜反应器构建了悬浮、生物膜双污泥系统,发现AnAOB在生物膜中富集对系统脱氮起到重要作用,通过140 d运行,TN的去除率达到79%。Trojanowicz等研究表明,同时容纳悬浮生长和生物膜的混合系统是实现高效生物量控制的更好选择,并且比纯生物膜的系统更有利。实现部分亚硝化是PN/A中试规模的主要瓶颈。悬浮污泥比生物膜污泥具有更高的硝化能力,AOB优先生长于悬浮污泥中,而AnAOB在生物膜中丰度更高。Malovanyy等通过在MBBR中引入悬浮生物,形成一体式固定膜活性污泥反应器(IFAS),TN去除负荷提高了3倍,TN去除率从36%提高到70%。Gustavsson等在运行1 000 d的中试规模试验中发现,以MBBRs建立的PN/A系统在处理城市污水时具有长期稳定性,氮去除速率达到0.45 kg/(m3·d),AnAOB富集在颗粒污泥和聚集体中,即使在主流条件下能够维持较高的生物活性和相对丰度。值得注意的是,生物载体、颗粒污泥在不同的反应器构造、水利冲击条件下均会出现一定的流失,需要利用载体截留装置,水力旋流器回收这部分生物量,Strass污水处理厂利用水力旋流器保留厌氧氨氧化颗粒保持生物量的平衡。近几十年,膜材料的研发投入不断加大,技术瓶颈不断突破,期望借助于多孔膜良好的截留效果可以实现AnAOB的高效富集和零流失。 生物强化是保持反应器内足够AnAOB和AOB生物量的另一种选择,这个方法也可用于加速启动和恢复失败的PN/A系统。生物强化可以通过以下2种方式实现。 (1)将含有AnAOB的污泥从侧流反应器输送到主流反应器。 (2)将AnAOB从主流出水中分离出来,将剩余污泥(主要含AOB)从侧流出水中分离出来,返回主流反应器。除生物强化外,通过周期性地向主流PN/A反应器加入高浓度氨废水,例如厌氧消化上清液,可促进AnAOB的生长。在Strass污水厂,从500 m3的侧流反应器以每周40 m3的速率对主流反应器进行生物强化,这有助于主流PN/A抑制NOB,而不影响侧流反应器的性能,并且侧流反应器中厌氧氨氧化颗粒的量得到了增加。 AnAOB、AOB的生物量稳定是PN/A实现高效脱氮的关键因素,通过内部、外部双重控制加强两者的有效富集,但还需深入细菌及微生物等层面进行研究,推动PN/A在主流污水处理工艺的工程化应用。 2.2 NOB的抑制 2.2.1 基于DO的控制方法 通过控制DO浓度和调节曝气模式是实现部分亚硝化的常用方法。基于AOB对氧的半饱和系数高于NOB,在较低的DO浓度环境下,NOB竞争氧的能力弱,AOB更容易占据优势地位,从而实现的积累。Wang等研究发现,当DO从1.4 mg/L降至0.7 mg/时,积累率逐渐升高。为了抑制NOB的活性,还可以通过间歇曝气的方式进行供氧,在缺氧条件下恢复曝气,AOB的活性恢复早于NOB。张杰等基于SBR反应器采用4 min曝气,2 min停曝的曝气模式并将DO浓度控制在较低水平(1.3~1.7mg/L),实现了亚硝化的稳定运行,积累率达到92%。Chen等在两级PN/A系统中控制间歇曝气比在(30 min/15 min)~(30 min/30 min),抑制NOB的同时总无机氮(total inorganic nitrogen,TIN)的去除率高达96.62%。 城市污水的处理中,考虑到进水中氨氮、碱度、COD的波动,所采用DO含量存在较大的波动,远远超出了理论值。据报道,通过低DO和FA联合控制的方式,可以完全抑制高氨氮废水中的NOB,但在城市污水中这种方法不适用。所以基于DO的控制策略需要与其他控制策略相结合,以保持长期的NOB抑制。在单级反应工艺中,亚硝化反应产酸、厌氧氨氧化反应耗酸的反应特性,存在pH上升与下降动态过程,可通过pH的变化来控制亚硝化的始终,Klaus等通过改变pH变化来控制曝气的始终,这种控制策略依据在连续曝气反应器中pH与氨氮去除之间的线性关系而应用。在曝气阶段,当pH下降达到最小值时,曝气终止;在停曝阶段,当pH达到最大值时,开始曝气。王元月等通过DO、pH和氨氮联合控制模式,设置氨氮留存含量为30 mg/L,作为曝气阶段的终止点,后续搅拌阶段通过厌氧氨氧化反应将剩余完全去除,对TN的去除率稳定在90%以上,实现了PN/A一体式SBR工艺自动化运行。 但间歇曝气的主要缺点是促进N2O的排放。氧化亚氮(N2O)是一种化学性质稳定温室气体,所产生的温室效应是CO2的320倍。N2O是当前最严重的臭氧层破坏气体并会造成气候风险的原因。N2O通过3种不同的生物途径产生,如图1所示。 (1)产生释放N2O的不稳定中间体羟胺(NH2OH)。 (2)还原亚硝酸盐和随后的NO作为替代电子受体,然后在好氧条件下释放N2O和N2。 (3)异养反硝化菌的反硝化作用。据报道,在间歇曝气反应器中,N2O的排放量占PN/A总去除氮的2.7%,且曝气量和DO是影响N2O产生的重要因素。目前,需要更多的研究来评估N2O的排放程度,并通过优化操作条件尽量减少N2O的产生。 AnAOB的倍增时间长,在最适温度下典型倍增时间大约为11 d,远大于氨氧化细菌(AOB)(0.3~1.5 d)和亚硝酸盐氧化菌(NOB)(0.5~1.8 d)的倍增时间,较慢的生长速率导致厌氧氨氧化的启动时间比较长。其次与城市污水的不利特征有关,包括低温、高C/N(4~12)、含量低且变化的氨氮(30~100mg/L)、高水力负荷。微生物的代谢活性往往受温度的影响较大。Tomaszewski等研究结果表明,35 ℃是AnAOB生物代谢最快,繁殖周期最短的最适温度。温度从30 ℃降到10 ℃时,AnAOB活性降低约10倍。在温度小于20 ℃时,特别是在小于15 ℃时,会出现脱氮效率低、出水质量差、不能保持长期稳定的脱氮情况。低温同时降低了AOB和NOB的活性和生长速度,但对AOB的影响比NOB更大,在温度低于20 ℃时,差异越大。处于弱势的AnAOB对亚硝酸盐的竞争力弱于

厌氧氨氧化—城市主流污水处理工艺的前世今生

【概要描述】厌氧氨氧化(Anammox)技术作为近年来新兴的自养脱氮工艺,具有无需外加碳源、低污泥产量、低能耗等优势。文中总结了厌氧氨氧化应用于主流污水处理工艺时面临的困难挑战,分析了厌氧氨氧化处理污水的最新研究进展,阐述了厌氧氨氧化菌(AnAOB)的截留、硝酸盐氧化菌(NOB)的抑制、有机物的不利影响等问题的具体解决方案。在节能减排的时代要求下,为实现能源回用、资源回收的废水处理模式,提出了可能实现能源自给的工艺组合,为实现主流厌氧氨氧化工艺工程化应用提供科学借鉴。

研究亮点

1、总结分析短程硝化厌氧氨氧化在主流污水应用中难以实现的关键问题;

2、分析了造成这些关键问题的原因,并针对每一个问题阐述了学者们所作出的研究进展;

3、分析了厌氧氨氧化工艺应用于实际主流污水的技术路线,从实际工程出发探究短程硝化厌氧氨氧化实际应用的可行性。

近些年来,城市污水中氮素污染物的去除以及越来越严格的氮排放标准已成为困扰人们的一大难题。目前,通过硝化/反硝化的常规生物脱氮(BNR)被广泛应用,并作为许多生活和工业废水处理设施实现脱氮的有效方法,但该过程需要消耗大量的能源。城市污水中的有机物含有大量的化学能,若能将有机物进行产能回收则可实现污水厂能源自给自足,将污水处理厂建成集水资源再生、能源回用及资源回收的多功能可持续水厂成为全球污水处理厂的发展目标。基于厌氧氨氧化工艺的新型生物脱氮技术已成为一种有吸引力的能源、资源高效管理的解决方案。

厌氧氨氧化工艺是荷兰代尔夫特大学的Mulder和Van de Graaf在一个中试反硝化流化床中发现的一种新型经济高效的生物脱氮技术。其基本原理是在厌氧条件下厌氧氨氧化菌(anaerobic ammoniumoxidizing bacteria,AnAOB)利用亚硝态氮作为电子受体,将氨氮氧化成N2的自养生物转化过程。与常规的生物脱氮方法相比,其优势在于不需要曝气,充分降低充氧电耗;无需有机碳源,节约了外加碳源所需的运行费用;不涉及异养型的反硝化菌,降低了剩余污泥产量。厌氧氨氧化对反应底物浓度有严格的要求(理论比为氨氮前置部分亚硝化技术生成为厌氧氨氧化的发生提供了前提,即部分亚硝化-厌氧氨氧化(partial nitrification-anammox,PN/A)。全球范围内,厌氧氨氧化污水处理工程已达百余座,已建成的厌氧氨氧化工程大多应用于中温、高氨氮废水的处理,例如污泥消化液、垃圾渗滤液、焦化废水、饲料加工废水等,但主流PN/A污水处理工程仅有新加坡樟宜污水厂、奥地利Strass污水厂。尽管已经进行了广泛的研究,但实现PN/A在城市污水中的应用仍是一个很大的挑战。目前大规模应用的报道较少,仍需要对厌氧氨氧化进行大量研究,从而提出可操作的具体应用方案。

1 污水主流处理工艺厌氧氨氧化的挑战

·AnAOB的倍增时间长,在最适温度下典型倍增时间大约为11 d,远大于氨氧化细菌(AOB)(0.3~1.5 d)和亚硝酸盐氧化菌(NOB)(0.5~1.8 d)的倍增时间,较慢的生长速率导致厌氧氨氧化的启动时间比较长。其次与城市污水的不利特征有关,包括低温、高C/N(4~12)、含量低且变化的氨氮(30~100 mg/L)、高水力负荷。微生物的代谢活性往往受温度的影响较大。Tomaszewski等研究结果表明,35 ℃是AnAOB生物代谢最快,繁殖周期最短的最适温度。温度从30 ℃降到10 ℃时,AnAOB活性降低约10倍。在温度小于20 ℃时,特别是在小于15 ℃时,会出现脱氮效率低、出水质量差、不能保持长期稳定的脱氮情况。低温同时降低了AOB和NOB的活性和生长速度,但对AOB的影响比NOB更大,在温度低于20 ℃时,差异越大。处于弱势的AnAOB对亚硝酸盐的竞争力弱于NOB,导致主流条件下NOB的抑制更加困难。城市生活污水的高C/N可能导致异养细菌的繁殖,降低AOB及AnAOB的竞争优势。根据Monod方程,低氨氮浓度也降低了AnAOB的生长速率和活性。较短的水力停留时间(HRT)使得AnAOB的保留更具挑战性。考虑到主流废水中含氮量变化、高出水水质的要求,以较低的成本去除厌氧氨氧化反应所产生的硝酸盐仍需解决。

尽管存在以上这些挑战,但Cheng等探究了主流条件下PN/A的脱氮性能,预设温度为25℃,后降至15 ℃的方法,系统最高脱氮效率达到(7.0±0.3) kg/(m3·d),是迄今为止最高脱氮效率的主流PN/A。在纽约一污水处理厂中,发现其缺氧段搅拌桨上自发富集了大量的AnAOB,该污水处理厂脱氮性能也明显提升,这两则案例表明了厌氧氨氧化应用于主流污水处理系统的可行性。厌氧氨氧化反应所需的代谢基质为和城市污水中的氮素以氨氮和有机氮形式存在,需要经过氨化作用产生,因此,实现的稳定积累是厌氧氨氧化应用于主流城市污水的难点。将硝化反应控制在第一阶段,AOB将氨氮氧化为使AOB处于优势地位,形成亚硝酸盐大量积累的短程硝化技术较为成熟并被广泛采用;同时短程反硝化提供的技术相较短程硝化更易控制,日益受到学者们的关注。

2 PN/A

为了促进PN/A在主流污水处理工艺中的实际应用,根据国内外学者的研究进行总结,可以从以下2个方面进行:AOB、AnAOB的有效保留,NOB的抑制。

2.1 生物量的控制

主流条件降低了AnAOB、AOB的活性和生长速度,同时使NOB和异养菌难以控制。AnAOB是PN/A工艺的基本组成部分,但其生长缓慢,易受低温和DO的影响,这就要求PN/A系统具备良好的生物保留能力,实现功能菌种的大量持留与富集,克服低温、高C/N、高水力负荷、短HRT等不利条件,维持PN/A系统长期稳定运行所需要的生物量。

生物膜和颗粒系统比悬浮自由生长系统有更佳的生物截留效果。AnAOB优先选择生长在生物膜、聚集体中,固着生长方式使它们能够抵抗不利的环境条件。Zhang等研究表明,在生物膜或聚集体较厚的反应器应对低温和积累耐受性能较强,有利于减少生物损失。卢欣欣等采用移动床生物膜反应器构建了悬浮、生物膜双污泥系统,发现AnAOB在生物膜中富集对系统脱氮起到重要作用,通过140 d运行,TN的去除率达到79%。Trojanowicz等研究表明,同时容纳悬浮生长和生物膜的混合系统是实现高效生物量控制的更好选择,并且比纯生物膜的系统更有利。实现部分亚硝化是PN/A中试规模的主要瓶颈。悬浮污泥比生物膜污泥具有更高的硝化能力,AOB优先生长于悬浮污泥中,而AnAOB在生物膜中丰度更高。Malovanyy等通过在MBBR中引入悬浮生物,形成一体式固定膜活性污泥反应器(IFAS),TN去除负荷提高了3倍,TN去除率从36%提高到70%。Gustavsson等在运行1 000 d的中试规模试验中发现,以MBBRs建立的PN/A系统在处理城市污水时具有长期稳定性,氮去除速率达到0.45 kg/(m3·d),AnAOB富集在颗粒污泥和聚集体中,即使在主流条件下能够维持较高的生物活性和相对丰度。值得注意的是,生物载体、颗粒污泥在不同的反应器构造、水利冲击条件下均会出现一定的流失,需要利用载体截留装置,水力旋流器回收这部分生物量,Strass污水处理厂利用水力旋流器保留厌氧氨氧化颗粒保持生物量的平衡。近几十年,膜材料的研发投入不断加大,技术瓶颈不断突破,期望借助于多孔膜良好的截留效果可以实现AnAOB的高效富集和零流失。

生物强化是保持反应器内足够AnAOB和AOB生物量的另一种选择,这个方法也可用于加速启动和恢复失败的PN/A系统。生物强化可以通过以下2种方式实现。

(1)将含有AnAOB的污泥从侧流反应器输送到主流反应器。

(2)将AnAOB从主流出水中分离出来,将剩余污泥(主要含AOB)从侧流出水中分离出来,返回主流反应器。除生物强化外,通过周期性地向主流PN/A反应器加入高浓度氨废水,例如厌氧消化上清液,可促进AnAOB的生长。在Strass污水厂,从500 m3的侧流反应器以每周40 m3的速率对主流反应器进行生物强化,这有助于主流PN/A抑制NOB,而不影响侧流反应器的性能,并且侧流反应器中厌氧氨氧化颗粒的量得到了增加。

AnAOB、AOB的生物量稳定是PN/A实现高效脱氮的关键因素,通过内部、外部双重控制加强两者的有效富集,但还需深入细菌及微生物等层面进行研究,推动PN/A在主流污水处理工艺的工程化应用。

2.2 NOB的抑制

2.2.1 基于DO的控制方法

通过控制DO浓度和调节曝气模式是实现部分亚硝化的常用方法。基于AOB对氧的半饱和系数高于NOB,在较低的DO浓度环境下,NOB竞争氧的能力弱,AOB更容易占据优势地位,从而实现的积累。Wang等研究发现,当DO从1.4 mg/L降至0.7 mg/时,积累率逐渐升高。为了抑制NOB的活性,还可以通过间歇曝气的方式进行供氧,在缺氧条件下恢复曝气,AOB的活性恢复早于NOB。张杰等基于SBR反应器采用4 min曝气,2 min停曝的曝气模式并将DO浓度控制在较低水平(1.3~1.7mg/L),实现了亚硝化的稳定运行,积累率达到92%。Chen等在两级PN/A系统中控制间歇曝气比在(30 min/15 min)~(30 min/30 min),抑制NOB的同时总无机氮(total inorganic nitrogen,TIN)的去除率高达96.62%。

城市污水的处理中,考虑到进水中氨氮、碱度、COD的波动,所采用DO含量存在较大的波动,远远超出了理论值。据报道,通过低DO和FA联合控制的方式,可以完全抑制高氨氮废水中的NOB,但在城市污水中这种方法不适用。所以基于DO的控制策略需要与其他控制策略相结合,以保持长期的NOB抑制。在单级反应工艺中,亚硝化反应产酸、厌氧氨氧化反应耗酸的反应特性,存在pH上升与下降动态过程,可通过pH的变化来控制亚硝化的始终,Klaus等通过改变pH变化来控制曝气的始终,这种控制策略依据在连续曝气反应器中pH与氨氮去除之间的线性关系而应用。在曝气阶段,当pH下降达到最小值时,曝气终止;在停曝阶段,当pH达到最大值时,开始曝气。王元月等通过DO、pH和氨氮联合控制模式,设置氨氮留存含量为30 mg/L,作为曝气阶段的终止点,后续搅拌阶段通过厌氧氨氧化反应将剩余完全去除,对TN的去除率稳定在90%以上,实现了PN/A一体式SBR工艺自动化运行。

但间歇曝气的主要缺点是促进N2O的排放。氧化亚氮(N2O)是一种化学性质稳定温室气体,所产生的温室效应是CO2的320倍。N2O是当前最严重的臭氧层破坏气体并会造成气候风险的原因。N2O通过3种不同的生物途径产生,如图1所示。

(1)产生释放N2O的不稳定中间体羟胺(NH2OH)。

(2)还原亚硝酸盐和随后的NO作为替代电子受体,然后在好氧条件下释放N2O和N2。

(3)异养反硝化菌的反硝化作用。据报道,在间歇曝气反应器中,N2O的排放量占PN/A总去除氮的2.7%,且曝气量和DO是影响N2O产生的重要因素。目前,需要更多的研究来评估N2O的排放程度,并通过优化操作条件尽量减少N2O的产生。

AnAOB的倍增时间长,在最适温度下典型倍增时间大约为11 d,远大于氨氧化细菌(AOB)(0.3~1.5 d)和亚硝酸盐氧化菌(NOB)(0.5~1.8 d)的倍增时间,较慢的生长速率导致厌氧氨氧化的启动时间比较长。其次与城市污水的不利特征有关,包括低温、高C/N(4~12)、含量低且变化的氨氮(30~100mg/L)、高水力负荷。微生物的代谢活性往往受温度的影响较大。Tomaszewski等研究结果表明,35 ℃是AnAOB生物代谢最快,繁殖周期最短的最适温度。温度从30 ℃降到10 ℃时,AnAOB活性降低约10倍。在温度小于20 ℃时,特别是在小于15 ℃时,会出现脱氮效率低、出水质量差、不能保持长期稳定的脱氮情况。低温同时降低了AOB和NOB的活性和生长速度,但对AOB的影响比NOB更大,在温度低于20 ℃时,差异越大。处于弱势的AnAOB对亚硝酸盐的竞争力弱于

  • 分类:行业动态
  • 作者:勤诚创业
  • 来源:北极星水处理网
  • 发布时间:2022-04-10 08:05
  • 访问量:
详情

厌氧氨氧化(Anammox)技术作为近年来新兴的自养脱氮工艺,具有无需外加碳源、低污泥产量、低能耗等优势。文中总结了厌氧氨氧化应用于主流污水处理工艺时面临的困难挑战,分析了厌氧氨氧化处理污水的最新研究进展,阐述了厌氧氨氧化菌(AnAOB)的截留、硝酸盐氧化菌(NOB)的抑制、有机物的不利影响等问题的具体解决方案。在节能减排的时代要求下,为实现能源回用、资源回收的废水处理模式,提出了可能实现能源自给的工艺组合,为实现主流厌氧氨氧化工艺工程化应用提供科学借鉴。

研究亮点

1、总结分析短程硝化厌氧氨氧化在主流污水应用中难以实现的关键问题;

2、分析了造成这些关键问题的原因,并针对每一个问题阐述了学者们所作出的研究进展;

3、分析了厌氧氨氧化工艺应用于实际主流污水的技术路线,从实际工程出发探究短程硝化厌氧氨氧化实际应用的可行性。

近些年来,城市污水中氮素污染物的去除以及越来越严格的氮排放标准已成为困扰人们的一大难题。目前,通过硝化/反硝化的常规生物脱氮(BNR)被广泛应用,并作为许多生活和工业废水处理设施实现脱氮的有效方法,但该过程需要消耗大量的能源。城市污水中的有机物含有大量的化学能,若能将有机物进行产能回收则可实现污水厂能源自给自足,将污水处理厂建成集水资源再生、能源回用及资源回收的多功能可持续水厂成为全球污水处理厂的发展目标。基于厌氧氨氧化工艺的新型生物脱氮技术已成为一种有吸引力的能源、资源高效管理的解决方案。

厌氧氨氧化工艺是荷兰代尔夫特大学的Mulder和Van de Graaf在一个中试反硝化流化床中发现的一种新型经济高效的生物脱氮技术。其基本原理是在厌氧条件下厌氧氨氧化菌(anaerobic ammoniumoxidizing bacteria,AnAOB)利用亚硝态氮作为电子受体,将氨氮氧化成N2的自养生物转化过程。与常规的生物脱氮方法相比,其优势在于不需要曝气,充分降低充氧电耗;无需有机碳源,节约了外加碳源所需的运行费用;不涉及异养型的反硝化菌,降低了剩余污泥产量。厌氧氨氧化对反应底物浓度有严格的要求(理论比为氨氮前置部分亚硝化技术生成为厌氧氨氧化的发生提供了前提,即部分亚硝化-厌氧氨氧化(partial nitrification-anammox,PN/A)。全球范围内,厌氧氨氧化污水处理工程已达百余座,已建成的厌氧氨氧化工程大多应用于中温、高氨氮废水的处理,例如污泥消化液、垃圾渗滤液、焦化废水、饲料加工废水等,但主流PN/A污水处理工程仅有新加坡樟宜污水厂、奥地利Strass污水厂。尽管已经进行了广泛的研究,但实现PN/A在城市污水中的应用仍是一个很大的挑战。目前大规模应用的报道较少,仍需要对厌氧氨氧化进行大量研究,从而提出可操作的具体应用方案。

1 污水主流处理工艺厌氧氨氧化的挑战

·AnAOB的倍增时间长,在最适温度下典型倍增时间大约为11 d,远大于氨氧化细菌(AOB)(0.3~1.5 d)和亚硝酸盐氧化菌(NOB)(0.5~1.8 d)的倍增时间,较慢的生长速率导致厌氧氨氧化的启动时间比较长。其次与城市污水的不利特征有关,包括低温、高C/N(4~12)、含量低且变化的氨氮(30~100 mg/L)、高水力负荷。微生物的代谢活性往往受温度的影响较大。Tomaszewski等研究结果表明,35 ℃是AnAOB生物代谢最快,繁殖周期最短的最适温度。温度从30 ℃降到10 ℃时,AnAOB活性降低约10倍。在温度小于20 ℃时,特别是在小于15 ℃时,会出现脱氮效率低、出水质量差、不能保持长期稳定的脱氮情况。低温同时降低了AOB和NOB的活性和生长速度,但对AOB的影响比NOB更大,在温度低于20 ℃时,差异越大。处于弱势的AnAOB对亚硝酸盐的竞争力弱于NOB,导致主流条件下NOB的抑制更加困难。城市生活污水的高C/N可能导致异养细菌的繁殖,降低AOB及AnAOB的竞争优势。根据Monod方程,低氨氮浓度也降低了AnAOB的生长速率和活性。较短的水力停留时间(HRT)使得AnAOB的保留更具挑战性。考虑到主流废水中含氮量变化、高出水水质的要求,以较低的成本去除厌氧氨氧化反应所产生的硝酸盐仍需解决。

尽管存在以上这些挑战,但Cheng等探究了主流条件下PN/A的脱氮性能,预设温度为25℃,后降至15 ℃的方法,系统最高脱氮效率达到(7.0±0.3) kg/(m3·d),是迄今为止最高脱氮效率的主流PN/A。在纽约一污水处理厂中,发现其缺氧段搅拌桨上自发富集了大量的AnAOB,该污水处理厂脱氮性能也明显提升,这两则案例表明了厌氧氨氧化应用于主流污水处理系统的可行性。厌氧氨氧化反应所需的代谢基质为和城市污水中的氮素以氨氮和有机氮形式存在,需要经过氨化作用产生,因此,实现的稳定积累是厌氧氨氧化应用于主流城市污水的难点。将硝化反应控制在第一阶段,AOB将氨氮氧化为使AOB处于优势地位,形成亚硝酸盐大量积累的短程硝化技术较为成熟并被广泛采用;同时短程反硝化提供的技术相较短程硝化更易控制,日益受到学者们的关注。

2 PN/A

为了促进PN/A在主流污水处理工艺中的实际应用,根据国内外学者的研究进行总结,可以从以下2个方面进行:AOB、AnAOB的有效保留,NOB的抑制。

2.1 生物量的控制

主流条件降低了AnAOB、AOB的活性和生长速度,同时使NOB和异养菌难以控制。AnAOB是PN/A工艺的基本组成部分,但其生长缓慢,易受低温和DO的影响,这就要求PN/A系统具备良好的生物保留能力,实现功能菌种的大量持留与富集,克服低温、高C/N、高水力负荷、短HRT等不利条件,维持PN/A系统长期稳定运行所需要的生物量。

生物膜和颗粒系统比悬浮自由生长系统有更佳的生物截留效果。AnAOB优先选择生长在生物膜、聚集体中,固着生长方式使它们能够抵抗不利的环境条件。Zhang等研究表明,在生物膜或聚集体较厚的反应器应对低温和积累耐受性能较强,有利于减少生物损失。卢欣欣等采用移动床生物膜反应器构建了悬浮、生物膜双污泥系统,发现AnAOB在生物膜中富集对系统脱氮起到重要作用,通过140 d运行,TN的去除率达到79%。Trojanowicz等研究表明,同时容纳悬浮生长和生物膜的混合系统是实现高效生物量控制的更好选择,并且比纯生物膜的系统更有利。实现部分亚硝化是PN/A中试规模的主要瓶颈。悬浮污泥比生物膜污泥具有更高的硝化能力,AOB优先生长于悬浮污泥中,而AnAOB在生物膜中丰度更高。Malovanyy等通过在MBBR中引入悬浮生物,形成一体式固定膜活性污泥反应器(IFAS),TN去除负荷提高了3倍,TN去除率从36%提高到70%。Gustavsson等在运行1 000 d的中试规模试验中发现,以MBBRs建立的PN/A系统在处理城市污水时具有长期稳定性,氮去除速率达到0.45 kg/(m3·d),AnAOB富集在颗粒污泥和聚集体中,即使在主流条件下能够维持较高的生物活性和相对丰度。值得注意的是,生物载体、颗粒污泥在不同的反应器构造、水利冲击条件下均会出现一定的流失,需要利用载体截留装置,水力旋流器回收这部分生物量,Strass污水处理厂利用水力旋流器保留厌氧氨氧化颗粒保持生物量的平衡。近几十年,膜材料的研发投入不断加大,技术瓶颈不断突破,期望借助于多孔膜良好的截留效果可以实现AnAOB的高效富集和零流失。

生物强化是保持反应器内足够AnAOB和AOB生物量的另一种选择,这个方法也可用于加速启动和恢复失败的PN/A系统。生物强化可以通过以下2种方式实现。

(1)将含有AnAOB的污泥从侧流反应器输送到主流反应器。

(2)将AnAOB从主流出水中分离出来,将剩余污泥(主要含AOB)从侧流出水中分离出来,返回主流反应器。除生物强化外,通过周期性地向主流PN/A反应器加入高浓度氨废水,例如厌氧消化上清液,可促进AnAOB的生长。在Strass污水厂,从500 m3的侧流反应器以每周40 m3的速率对主流反应器进行生物强化,这有助于主流PN/A抑制NOB,而不影响侧流反应器的性能,并且侧流反应器中厌氧氨氧化颗粒的量得到了增加。

AnAOB、AOB的生物量稳定是PN/A实现高效脱氮的关键因素,通过内部、外部双重控制加强两者的有效富集,但还需深入细菌及微生物等层面进行研究,推动PN/A在主流污水处理工艺的工程化应用。

2.2 NOB的抑制

2.2.1 基于DO的控制方法

通过控制DO浓度和调节曝气模式是实现部分亚硝化的常用方法。基于AOB对氧的半饱和系数高于NOB,在较低的DO浓度环境下,NOB竞争氧的能力弱,AOB更容易占据优势地位,从而实现的积累。Wang等研究发现,当DO从1.4 mg/L降至0.7 mg/时,积累率逐渐升高。为了抑制NOB的活性,还可以通过间歇曝气的方式进行供氧,在缺氧条件下恢复曝气,AOB的活性恢复早于NOB。张杰等基于SBR反应器采用4 min曝气,2 min停曝的曝气模式并将DO浓度控制在较低水平(1.3~1.7mg/L),实现了亚硝化的稳定运行,积累率达到92%。Chen等在两级PN/A系统中控制间歇曝气比在(30 min/15 min)~(30 min/30 min),抑制NOB的同时总无机氮(total inorganic nitrogen,TIN)的去除率高达96.62%。

城市污水的处理中,考虑到进水中氨氮、碱度、COD的波动,所采用DO含量存在较大的波动,远远超出了理论值。据报道,通过低DO和FA联合控制的方式,可以完全抑制高氨氮废水中的NOB,但在城市污水中这种方法不适用。所以基于DO的控制策略需要与其他控制策略相结合,以保持长期的NOB抑制。在单级反应工艺中,亚硝化反应产酸、厌氧氨氧化反应耗酸的反应特性,存在pH上升与下降动态过程,可通过pH的变化来控制亚硝化的始终,Klaus等通过改变pH变化来控制曝气的始终,这种控制策略依据在连续曝气反应器中pH与氨氮去除之间的线性关系而应用。在曝气阶段,当pH下降达到最小值时,曝气终止;在停曝阶段,当pH达到最大值时,开始曝气。王元月等通过DO、pH和氨氮联合控制模式,设置氨氮留存含量为30 mg/L,作为曝气阶段的终止点,后续搅拌阶段通过厌氧氨氧化反应将剩余完全去除,对TN的去除率稳定在90%以上,实现了PN/A一体式SBR工艺自动化运行。

但间歇曝气的主要缺点是促进N2O的排放。氧化亚氮(N2O)是一种化学性质稳定温室气体,所产生的温室效应是CO2的320倍。N2O是当前最严重的臭氧层破坏气体并会造成气候风险的原因。N2O通过3种不同的生物途径产生,如图1所示。

(1)产生释放N2O的不稳定中间体羟胺(NH2OH)。

(2)还原亚硝酸盐和随后的NO作为替代电子受体,然后在好氧条件下释放N2O和N2。

(3)异养反硝化菌的反硝化作用。据报道,在间歇曝气反应器中,N2O的排放量占PN/A总去除氮的2.7%,且曝气量和DO是影响N2O产生的重要因素。目前,需要更多的研究来评估N2O的排放程度,并通过优化操作条件尽量减少N2O的产生。

AnAOB的倍增时间长,在最适温度下典型倍增时间大约为11 d,远大于氨氧化细菌(AOB)(0.3~1.5 d)和亚硝酸盐氧化菌(NOB)(0.5~1.8 d)的倍增时间,较慢的生长速率导致厌氧氨氧化的启动时间比较长。其次与城市污水的不利特征有关,包括低温、高C/N(4~12)、含量低且变化的氨氮(30~100mg/L)、高水力负荷。微生物的代谢活性往往受温度的影响较大。Tomaszewski等研究结果表明,35 ℃是AnAOB生物代谢最快,繁殖周期最短的最适温度。温度从30 ℃降到10 ℃时,AnAOB活性降低约10倍。在温度小于20 ℃时,特别是在小于15 ℃时,会出现脱氮效率低、出水质量差、不能保持长期稳定的脱氮情况。低温同时降低了AOB和NOB的活性和生长速度,但对AOB的影响比NOB更大,在温度低于20 ℃时,差异越大。处于弱势的AnAOB对亚硝酸盐的竞争力弱于NOB,导致主流条件下NOB的抑制更加困难。城市生活污水的高C/N可能导致异养细菌的繁殖,降低AOB及AnAOB的竞争优势。根据Monod方程,低氨氮浓度也降低了AnAOB的生长速率和活性。较短的水力停留时间(HRT)使得AnAOB的保留更具挑战性。考虑到主流废水中含氮量变化、高出水水质的要求,以较低的成本去除厌氧氨氧化反应所产生的硝酸盐仍需解决。

研究发现,NOB在长期运行中出现对游离氨(free ammonia,FA)、游离亚硝酸(free nitrous acid,FNA)的耐受性,需要不断改变控制浓度。一些化学试剂的添加能够有效抑制NOB的活性,实现反应器的快速启动及恢复。

Li等进行了羟胺的梯度投加试验(2.5、3.5、4.5 mg/L),发现当投加量为4.5 mg/L时,在进水氨氮含量为70.5 mg/L下,在19 d时积累率增加到93.3%,系统中的NOB被淘汰。Sui等在投加NH2OH和N2H4消除积累的对比试验中得出结论,添加NH2OH的效果更佳,增强了功能基因hao的活性表达,对NOB的抑制更加持续稳定。Wang等[36]在处理高氨氮废水时,初始含量为75 mg/L,通过梯度增加甲酸含量(0~50 mmol)探究对部分亚硝化的短期、长期影响,当甲酸含量为30mmol时,通过27d的运行,亚硝酸盐积累率(NAR)由0.3%增长到90%以上,在停止添加甲酸后,NAR仍保持在91.3%的较高水平,并指出甲酸在PN工艺中作为NOB的选择抑制剂,具有长期、可持续的稳定性。

虽然通过投加抑制剂能快速实现的快速积累,但需要注意外源投加造成的二次污染,并避免对后续厌氧氨氧化造成不良影响。因此,需要开发更高效、环保的抑制剂,继续加强主流PN/A系统中AOB、AnAOB、NOB活性及生物丰度的试验研究。

2.2.3 含氮化合物控制

一定浓度的FA、FNA浓度对AOB和NOB均有抑制作用,与AOB相比,NOB对FA更敏感,FA对AOB的抑制起始含量为10~150 mg/L,对NOB的抑制起始含量为0.1~6 mg/L。当FNA含量大于0.2 mg/L时,NOB被完全抑制,而AOB对FNA的抑制含量为0.5~0.63 mg/L。韩晓宇等利用FA与FNA的联合抑制方法处理污泥消化液,使亚硝酸盐氮的积累率保持在90%以上实现稳定的亚硝化。通常反应器中较高的FA、FNA主要源于进水中较高的氨氮浓度,这也是部分亚硝化在高氨氮废水中易实现的原因。但在低氨氮条件下传统的FA、FNA控制作用明显减弱。但Wang等开发了FA冲击技术,通过对AOB、NOB反复投加厌氧污泥消化液来提供高浓度FA,在限氧的条件下建立主流部分亚硝化,使溶解氧含量为0.2 mg/L,使生物膜上AOB活性远高于NOB,经过2个月的运行,实现了对NOB选择性抑制,NAR接近100%;将部分亚硝化的出水与氨氮废水按合适比例混合,进入厌氧氨氧化反应器进行脱氮。

对于低氨氮废水,较难通过FA、FNA控制实现部分亚硝化。但可以使反应器中的剩余氨浓度保持在较低水平,一定浓度的剩余氨使AnAOB与NOB竞争亚硝酸盐,使AOB与NOB竞争氧气。Poot等在主流条件下验证了控制残留氨浓度对NOB的抑制是有效的,在温度为20 ℃、DO含量小于4 mg/L下,将残留氨含量控制在2~5 mg/L,并保持长期的耗氧速率和氨氧化速率。

基于FN、FNA的控制方法,在经济效应和环境保护方面具有良好前景,还需进一步加强研究两者长期的共同作用及系统功能菌对其的适应性。积极借鉴高氨氮废水的处理经验,在主流PN/A中进行系统优化、创新。残留氨在侧流PN/A中虽然不是关键控制因素,但在主流废水处理中对微生物之间的相互作用及NOB的抑制是至关重要的。目前,残留氨浓度对NOB抑制稳定性已被广泛证实,但其控制策略仍处于发展阶段,控制积累尚不明晰,需要进一步深入研究残留氨浓度对微生物相互作用及NOB的抑制机制。

尽管学者们做了大量的研究,但在主流条件下的实现NOB的抑制还是有很多困难。例如未能保持较低的DO浓度,不仅导致NOB过度生长,对AnAOB也有抑制作用。Strous等发现,在0.5%、1.0%、2.0%的空气饱和度下,AnAOB被完全抑制,之后在完全厌氧的情况下,被抑制的AnAOB活性得到恢复,说明DO对AnAOB的抑制是可逆的,所以一个好的控制策略不仅要解决NOB的抑制问题,还需要保持较低的DO为AnAOB提供生长条件。单一的控制策略很难完成NOB在主流污水处理工艺中的抑制,需要多种抑制策略相联合才能达到目的。

3 短程反硝化与厌氧氨氧化工艺耦合

作为AnAOB生长的关键底物,不仅可以通过短程硝化产生,还可以通过短程反硝化产生,并且通过反硝化产生的过程更为稳定和可控。在反硝化菌的作用下发生不完全反硝化产生的过程称为短程反硝化,将还原产物定格在形成的大量积累。短程反硝化和厌氧氨氧化这2个过程的反应物和产生物可以形成互补,短程反硝化不仅可以消耗厌氧氨氧化反应产生的同时可以为厌氧氨氧化反应提供代谢必需的电子供体短程反硝化与厌氧氨氧化耦合工艺的开发,为生物脱氮提供了新的方向。短程反硝化将硝酸盐还原为亚硝酸盐过程中N2O的产生量较低,有效降低温室气体排放。目前,对于短程反硝化以及与厌氧氨氧化的耦合工艺的研究仍处在小试规模,表1列举了耦合工艺实验室成功启动案例。

短程反硝化与厌氧氨氧化耦合工艺可以是一体式也可以是分段式。一体式短程反硝化耦合厌氧氨氧化工艺是指反硝化菌与AnAOB在同一反应器内驯化培养,该工艺的特点是反硝化产生的能及时被AnAOB消耗,反应器抗冲击负荷能力强,占地面积小,但需要控制C/N、pH、DO、电子供体种类等外界环境和操作条件来保证短程反硝化与厌氧氨氧化的平衡,总体来说两类微生物共存的难点已经取得较好的控制,在耦合工艺应用方面有较大的应用潜力。分段式工艺是将反硝化菌与AnAOB分别放在独立的反应器内培养,有效避免2种菌种对底物和空间的竞争,并能降低流入后置厌氧氨氧化反应器内的有机物浓度。Ji等在处理城市污水时发现耦合工艺能稳定有效的主要原因是厌氧氨氧化脱氮占主导地位,厌氧氨氧化的贡献率为77.2%,远高于反硝化22.8%的贡献率。更有研究发现,对反硝化菌和AnAOB之间的竞争起关键性作用,通常调节一体式和短程反硝化反应器进水C/N为2~3,更有利于形成稳定的微生物代谢环境。

西安第四污水处理厂实际改造后的新工艺的处理效果在行业内受到广泛关注。主体工艺为AAO+MBBR,通过向缺氧池和厌氧池投放填料,改造后的出水水质达到一级A类标准,其出水TN含量基本保持在10 mg/L以下。对填料以及悬浮污泥,厌氧区和缺氧区的微生物进行高通量分析,载体具有较高的厌氧氨氧化活性,填料表面生物膜的颜色逐渐变为微红色,高度浓缩在缺氧区的生物载体上。随后,采用同位素跟踪法进一步证实了在缺氧环境下的厌氧氨氧化反应,并且测定结果表示厌氧氨氧化占脱氮的比例达到30%左右。这项实际应用工程是世界范围内首个在常温水温条件下实现了厌氧氨氧化反应的生产性规模装置,为厌氧氨氧化实际工程应用提供可靠依据。在主流PN/A和短程反硝化大量实际应用之前,向污水厂的缺氧和厌氧单元中以生物膜形式加入厌氧氨氧化菌生物量,可以提高污水处理效果,并降低处理成本。

4 针对能源回收的厌氧氨氧化工艺

城市污水中C/N比过高,不适合直接应用PN/A,AnAOB在高浓度有机碳存在的情况下与反硝化细菌产生竞争不利于其生长。为了排除水体中有机物对厌氧氨氧化的影响,实现污水厂高效能源回收效率,需对城市污水中的有机物进行预处理。Jun等提出2种可运用于厌氧氨氧化的工艺组合,工艺流程如图2所示。工艺一中,A段捕捉水体中的有机物并回收污水中的化学能和可利用能源,B段通过自养代谢途径处理剩余的营养物质。若A段产生的能量弥补B段的能耗,就可以实现能量的自给自足。工艺二中,A段捕获水体中的有机碳并实现能源回收;B1段接收一部分生活污水和A段的出水,在充氧的条件下完成短程硝化和反硝化过程;A段的出水(含有氨氮)和B1的出水(含有亚硝酸盐)共同加入B2段,发生厌氧氨氧化反应。在整个A、B工艺流程中,A段中有机物的去除效果对B段厌氧氨氧化有重要影响。A段的预处理有以下几种方式。

厌氧消化技术对PN/A的应用具有很强的实际意义,已成为一种有前景的技术。杨舒茗等将厌氧膜生物反应器AnMBR作为预处理工艺,在AnMBR中COD去除率为96%,其中80.3%的COD在此段转化为甲烷,TN平均去除率78%。因为城市污水的底物强度和温度较低,溶解的甲烷占厌氧处理产生的甲烷总量的一大部分,所以厌氧甲烷氧化与反硝化耦合巧妙地解决甲烷溶解的问题,当系统中同时存在和时,反硝化型厌氧甲烷氧化过程优先利用亚硝酸盐作为电子受体,该过程被称为依赖亚硝酸盐型的厌氧甲烷氧化(N-DAMO),在去除溶解的甲烷中发挥重要作用。但需要注意的是,厌氧反应器中产生的硫化物会对反应器中微生物的活性产生一定影响,如何降低硫化物对PN/A的抑制作用需要进一步的研究探讨。

高负荷活性污泥(HRAS)具有较高的COD捕获能力,是目前应用最广泛的碳浓缩处理工艺,具有占地面积小、能耗低等优势。HRAS工艺中的SRT、HRT通常分别为1~4 d、2~4 h,具体工艺参数取决于当地温度和废水特征。HRAS工艺可将进水中的颗粒性、胶体性以及溶解性物质富集浓缩于剩余污泥中,通过厌氧消化或焚烧的方式来实现污水中的碳转向。在HRAS工艺中,颗粒性COD与胶体性COD是通过生物絮凝作用吸附于絮体之上,再经过固液分离过程得到去除,其处理效果与胞外聚合物(EPS)的产生有密切关系;而溶解性COD(SCOD)则通过是胞内物质贮存的形式加以去除,溶解氧、SRT、HRT等参数对胶体和颗粒COD的去除效果明显,而对可溶性COD的去除无显著影响。最新的研究结果表明,HRAS-PN/A系统在满足能量自给的情况下,净能量产量达到4 918 kW·h/d,出水水质符合欧盟标准[COD、TN、总悬浮固体(TSS)含量分别为125、15、35 mg/L],并且与传统的活性污泥系统相比,运营成本降低了107%。

化学强化一级处理(CEPT)是通过在污水中加入化学物质(如金属盐、聚合物),通过混凝、絮凝作用去除污水中的COD、SS、TP以及重金属等。CEPT对溶解性COD去除没有明显效果。因此,在考虑将CEPT用作预处理之前,应对这些因素进行全面评估,例如原废水的特性、废水中的SCOD、污泥的消化性能、污泥的脱水和处置成本等。

磁混凝技术是一种高效的碳源分离技术,不仅停留时间短(5~60 min),对污染物(COD、SS、TP等)具有较高的去除效果。可显著降低后续工艺的处理负荷,促进碳源回收提高出水水质可作为厌氧氨氧化的预处理工艺。经磁混凝预处理后的生活污水COD去除率达到60%左右,C/N降低至2~3,较低的有机物有利于厌氧氨氧化反应的进行。狄斐等采用PN/A工艺处理经磁混凝预处理后的生活污水,该系统中COD去除率为74.42%,最高实现TN、氨氮去除率为86.28%和95.45%的效果。

最后,强化生物除磷(EBPR)是一种同时去除生活污水中有机碳和磷的方法。在传统的生物养分去除中,有机碳源不仅被聚磷菌(PAO)摄取用于除磷,还可以被反硝化细菌消耗用于除氮。更有学者通过生物电化学系统作为PN/A的预处理单元不仅可以直接发电,还可以通过电流刺激提高脱氮率。

未来的城市主流污水处理中,有机碳和磷被作为能源大量回收利用,氮成为主要的污染物,PN/A工艺能够有效减少对有机碳的依赖,有机物的预处理工艺的研究与开发将为PN/A的工程化、规模化应用提供广阔前景。

5 结论与展望

厌氧氨氧化是一种经济高效的脱氮工艺,在城市主流污水处理的脱氮领域具有广阔应用前景。该工艺在侧流工艺中稳定运行具有突出的脱氮优势,主流处理工艺已在实验室稳定运行,但对于现场应用,仍受限于低温、低氨氮、高有机物浓度等因素。目前,国内外对于城市污水处理中厌氧氨氧化以及短程硝化、短程反硝化耦合工艺的研究仍处于小试阶段,而且对于其中微生物反应机理的研究尚不明确,未来需要从以下几个方面展开研究。

(1)主流厌氧氨氧化工艺中微生物群落结构复杂,采用分子生物学测试、建立模型的方法解析厌氧氨氧化菌与其他功能菌的共存模式和微生物群落变化机制。

(2)实际污水成分复杂,进水污染物存在波动,会影响耦合工艺系统稳定性,由菌种适应的条件不统一,需要对耦合系统的稳定性进一步研究。

(3)随着耦合工艺的快速发展,新型生物反应器的构建和运行需要不断创新突破,优化现有反应器运行方式,构建适合AnAOB及其功能菌适宜的生存环境,是未来研究的主要方向之一。

(4)对耦合工艺中不同环境影响参数进行研究,为反应器运行优化提供了参考,但反应参数的最优设置未必就是耦合系统处理效果的最佳组合,因此,需要通过建立数学模型模拟多个常用参数,从而得出更准确的优化运行方法。

关键词:

扫二维码用手机看

  • 2022-04-16
    凝结水高温除铁装置
    凝结水高温除铁装置概述: 凝结水高温除铁装置采用304不锈钢制造,内外表面抛光,配套的过滤元件(水膜滤芯)是一种新型多孔过滤材料,具有结构均匀、孔径均匀、孔隙率高、过滤阻力小、耐高温、耐腐蚀使用寿命长等优点。该过滤装置具有体积小、重量轻、使用方便、过滤面积大、使用寿命长、过滤速度快、热稳定性和化学稳定性好,适合各种介质的气液体过滤。产品广泛应用于食品、烟草、饮料、制药、化工等行业,具有更长的使用寿命。 1.产品特点 1.1 耐腐蚀性能好 1.2 过滤效率高达95—99.9 1.3 可耐温为120℃ 1.4 使用寿命长,易于反洗,可反复再,生 2. 应用领域 2.1 石油化工等领域的固液分离和处理等  2.2药液、化工原料等脱碳过滤 2.3 高温、高压介质的过滤与分离  2.4 强酸、强碱、强氧化剂的过滤 3. 主要技术参数 3.1 壳体材质:304 3.2设计压力/工作压力:0.6/0.4Mpa  3.3试验压力:0.6Mpa 3.4 设计温度/工作温度:120℃/95℃ 3.5过滤元件材质:专用滤芯 3.6工作电源:380V50Hz,三相四线制 三、结构特征及工作原理 1. 结构特征:设备采用撬装设计,所有部件安装在撬架上,并通过管阀连接,设备运抵现场,只需接通电源和进、出、排污管路即可调试运行;安装、使用、维护方便,操作灵活,占用空间小,对地面压力均衡,并具有减振消噪功能。 2. 材料甄选:过滤器壳体选用SS304不锈钢衬塑处理,、管道、阀门均选用304L材质,耐化学腐蚀性能强,使用寿命长,为降低成本,撬架为碳钢结构; 3 易于操作,控制可靠:选用西门子s7-200系统控制,控制面板设有“自动/手动”转换旋钮,人机界面和谐友善;根据水质监测数据或压力传感器信号,有序控制阀门的开闭,自动改变水流通道完成规律去的反洗、自检过程,通过对过滤器的反冲洗,能及时出掉过滤器中拦,截的污物,避免在使用过程中由于污物沉积和固结在过滤器中,造成系统出水量小或出水水质不佳。 4运行:具有水质在线检测和故障检测报,警功能,能够保证在应急状态下凝结水管网系统正常运行,具有自动泄水功能。 5 工作原理:凝结水由进水管进入预处理罐,罐内设有催化氧化和磁聚合单元,在催化剂作用下二价铁离子得以完全氧化的,并在磁场作用下粒径变大至微米级以上;经过预处理的凝结水经由进水总管分别进入多个过滤罐,“长大”后的氧化铁颗粒及其他杂质被滤元拦,截,滤元在使用一段时间以后,将产生一定程度的堵塞,表现为流量减少,过滤前端压力高,如:从0.22mPa以下升高到0.3mPa以上,这时控制系统将对每个过滤罐单独轮流反洗,反洗过程连续供水不停机。 四、设备运行说明 1设备安装:设备采用撬装设计,所有部件安装在撬架上,由管阀连接对安装地基没有特殊要求,普通铺装地面即可安装。 2检查电控系统:检查电源电压是否正常,接地是否可靠,所有接头是否牢固,连接点线无破损,线槽桥架是否完好,然后合闸通电,检查仪表仪器指示是否正常。 3 检查管阀系统:在控制面板点击“手动反洗”,关闭出水阀、排污阀,打开进水阀,检查管路连接是否存在跑冒滴漏现象; 4 清洗安装垃圾:打开进水阀、排污阀,关闭出水阀冲刷设备和管道内部存留杂物; 5 初运行:在控制面板点击“运行”,所有阀门自动回位,打开设备进出水口手动阀门,设备进入自动运行状态; 6 正常运行:根据水质情况修正排污时长和排污周期,使设备始终处于运行状态; 7 反洗:根据设定的时间或压差启动反洗程序,两者互补,连续两次反洗后仍不能降低压差,则声光提醒清洗滤元; 8 滤元清洗方法: 对于新使用的滤芯,一般采用清水反冲或气体反吹的方法来进行清洗,即用稍大于工作压力(如;0.3mPa)的清水反方向注水清洗。反冲时间约为1-3分钟即可;
    查看更多 +
  • 2022-04-16
    胶球清洗装置
     胶球清洗装置设备概述 循环水系统中因水质问题造成的表面形成污垢,使换热器的传热效率降低,增加系统耗能。传统方法为定期化学或物理清洗,其缺点是清洗不及时,在污垢形成一定程度时才进行清洗,而在其清洗周期内造成许多能源的浪费。针对以上问题,我公司参考了国内外先进设备的基础上,自主研发了新一代胶球清洗装置。可在系统正常运营的情况下,自动清洗换热器表面污垢,清洗周期可根据系统情况任意调整,使系统节能5-15。  胶球清洗装置设备特点 1、自动化程度高,操作较简单,可实现智能远传控制 2、有水力射流发球,对胶球损伤较小,胶球寿命长。 3、全新的胶球回收装置,回收率达98以上。  胶球清洗装置技术参数 工作电压:380V50Hz 功 率:1.5KW—2.2KW 工作环境要求:-5℃--50℃ 相对湿度:<95 供 电:三相五线制  胶球清洗装置设备构成 JQQX冷凝器胶球自动清洗系统主要由高集成度的发球机和收球机组成,其中收球机分三种型号。 JYT发球机(FQJ) 1、电源:3*380V/220V;频率:50Hz;功率:1.5-2.2KW;耗电量小于1KW·H/天。 2、连接口径有DN50\DN65\DN80;承压16Bar;发球时水量瞬间不小于7L/S。 3、内置专用胶球泵、电动阀门转换水道,送球、回球线路分离,结构紧凑合理。 4、箱体装有大口径玻璃视窗,观察送、回球直观明了。  胶球清洗装置设备构成 JQQX收球机: 1、碳钢外壳,内置不锈钢滤网,内壁光滑不刮球,使用寿命长,用于收集胶球;承压16Bar; 2、遵循流体力学原理设计,有。效过流面积大于连接管道横截面积的4倍。水流速度不小于4m/s时,其局部水头损失小于0.5m。 3、可根据现场情况,灵活设计安装Y型、T型、直通漏斗式普通型多种结构,安装灵活方便,水阻少,不留回球死角。 安装示意及注意事项 JQQX用于冷水机组冷凝器清洗,安装在冷水机组的水进出水管上(如图所示)。为保证JQQX正常运行,保持良好的运行工况,安装时应注意以下事项: 1、发球机的外接管路应尽量做短,尽量减少直角弯头,尽量减少运行阻力。 2、收球器安装在水出水管道上,并设于水出水软管接头与水出水管阀门之间,且两端需加装短接,以便收球器的检修与拆装。 3、水流开关应注意水流方向,且水平或垂直安装在水进出水管上,离弯头的位置≥30CM,确保提供给JYT的信号正确稳定。 4、确定各部件的安装位置,预留足够的检修空间。周围预留600mm的检修空间。 5、启动前,清,理冷凝器换热管内壁的污垢,清理整个管道系统(包括过滤器),排除安装过程残留在管道系统中的焊渣、铁丝、塑料等,施工严格按《通风与空调工程施工质量验收规范》GB50243-2002的相关规定进行。 技术要求: 1、根据现场情况,确定发球机、收球器的安装位置,并预留足够的检修空间,且不得影响其他设备运行、检修。 2、安装应有人士进行; 3、设备、管件安装连接要顺畅、牢固、整齐,尽量减少直角弯头; 4、视图尺寸仅供参考。  备注 1、以上选型仅供参考,根据客户要求及现场勘查可配套符合客户要求的型号; 2、电机功率有1.5KW和2.2KW两种,选择以实际要求为准; 3、根据特殊要求可选“Y”型或“T”型收球器。 4、胶球投放量为冷凝器管道数量的10%。
    查看更多 +
  • 2022-04-16
    定压补水装置设备原理
     定压补水装置是利用气体的可压缩性能而设计的,它是在管网补水泵之间增加了一台囊式气压罐。同时在管道上增加电接点压力表,电接点压力可直接显示管网的系统压力,当系统压力低于设置小压力时,电接点压力表将传输信号给管网补水泵,管网补水泵开始工作,系统压力大于设置高压力时,电接点压力表将传输信号给管网补水泵,管网补水泵停止工作。在管网补水泵停止工作后,系统压力靠囊式定压罐来补偿,当管网系统压力下降时,囊式气压罐内的气体要自然膨胀,罐体内的水在气体压力下自动补入系统;当囊式定压罐内的水减小到一定程度,靠管网补水泵来增压,罐内的气体再次被压缩。如此往复的工作,实现对管网系统的稳压。  定压补水装置主要特点 1、一次充气可保持长久使用。 2、罐体为密闭装置,气水不接触,保证水质不受外界污染。 3、占地面积小,安装快、投资省、操作维修方便。 4、可取代生活消防及采暖、空调用的高位水箱及水塔,有利于建筑美观和结构抗震,降低建筑的造价。 5、能自动消,除管网中的水锤音及噪音。 6、在热水采暖及空调系统中起膨胀水箱作用和自动补水作用。 定压补水装置适应范围  1、工业及民用建筑的生产、生活消防给水系统。 2、热水供应系统、热水采暖系统、空调系统 3、作为高层建筑给水系统中水锤噪音消,除设备。 4、农村自来水的理想设备、建筑施工、流动作业中临时供水设备。 5、旅游设施及旅游点的喷泉、林场农村的灌溉系统。 6、集中供热热水采暖系统中作落地膨胀水箱。  定压补水装置设备构造图: 1、罐体 2、水泵 3、配电柜 4、YTK压力 5、底座 6、基础 7、吊装环 8、出水口 9、吸水口 10、充气嘴  五、工作原理 1、囊式自动给水装置 2、DL立式多级泵 3、压力 4、储水池 5、闸板阀门 6、室内消防栓箱 7、进水管道 8、供水干管 9、进出口水阀 10、液位自动控制阀 11、自动负压吸水罐 定压补水装置运行形式 NZGP系列产品可根据用户的要求及用水量的大小进行自动调节,即设备所设置的两台水泵既可单独交替运行,也可并列运行,这样即延长了设备的使用寿命,又满足了用户的要求,确保供水及系统正常运行。 定压补水装置设备安装图: 两泵一罐 #200混凝土 H2 H 预留孔100x100,深300 L3 L2 接循环水泵入口处 B A1 A2 A3 A 定压补水装置设备调试方法与注意事项  调试方法: 1、进出水管路、控制柜电源线、增压泵控制线、电接点压力表信号线等部件连接完毕,检查无误后,进行下一步; 2、检查泵的进出口阀门处于正常全开位置; 3、开启进水阀门,打开两台增压泵泵体的旋塞放净内部空气; 4、根据现场实际需要,将电接点压力表的压力上下限调整好(下限表示低压力,即启泵压力值;下限表示高压力,即停泵压力值)。 5、将控制柜控制开关转到“停止”位置,接通控制柜电源。手动预启动增压泵,检查泵的转向是否正确(通过泵位转换开关对两台泵逐一试验)。 6、将控制柜控制开关转到“自动”位置,设备自动运行。  定压补水装置注意事项: 1、严格按照调试步骤逐步进行,不允许跨步操作,以免造成不必要的机械故障; 2、电接压力表上下限压差值不允许低于0.08MPa,如上限压力调整为0.3 MPa,则下限压力值不允许调整为0.22 MPa以上,以免造成泵的频繁启动。 3、调整电接点压力表的上限值不允许超过泵的高压力上限,如泵的扬程为32米,则电接点压力表的上限值不允许超过0.32 MPa,否则会导致增压泵电流过大,烧坏电机。 4、立式增压泵只为管道增压用,供水水位高于泵的进水口,且供水不允许含有大量气体。
    查看更多 +
  • 2022-04-16
    螺旋脱气除污器
    前言 螺旋脱气除污器(别名:螺旋空气杂质分离器)产品详情: 螺旋脱气除污器--连续不断工作,发挥双重功效的螺旋脱气除污器,通过一个装置起到的净化水系统中的气泡和杂质的功能。由于这个整合的举动,所有的气泡和微小的杂质将会被永,久的脱除,保持系统不受气泡和杂质得困扰。它与传统的过滤器和除污器工作方式不同,维护很少。这个装置是否能够在供热系统里发挥它的作用取决于不同方面。 该连续不断工作,发挥双重功效的螺旋脱气除污器,通过这个装置可以起到净化水系统中的气泡和杂质的功能。由于这个整合的举动,所有的气泡和微小的杂质将会被的脱除,保持系统不受气泡和杂质的困扰。它与传统的过滤器和除污器的工作方式不同,维护很少。这个装置能否在供热系统里发挥它的作用取决于不同的方面。脱水除污器必,须安装在主线上,而且为系统温度高点。对于供热系统,位置是供热机组的出口。对于制冷系统,温度高点在制冷机组的回水管上。 螺旋脱气除污器适用范围 螺旋除污器主要用来消,除地下水和包括地下热水及其它水源中的固体颗粒及水中气体,在给水处理领域 除砂、降浊、固液分离、脱气等效果显著。 ● 脱除循环系统中的气泡和气团; ● 大幅减少系统一次注水后的调试时间,不需要额外的排气阀; ● 可在系统运行的情况下排除污物; ● 可以脱除小至5微米(=0.005MM)的污物杂质; ● 同类产品中低的压降比; ● 不会造成不必要的系统停机; ● 广泛适用于不同压力,温度和材质; 螺旋脱气除污器 产品特点 1、除污脱气效率高,清污方便,取消以往除污器前后阀门及旁通管,阻力小且恒定 不变等优点。 2、结构简单,成本低廉,易于安装和操作,几乎不需要维护。 3、增加了过滤单元(过滤精度可由用户选定)及脱气单元,具有除砂率高,脱气效率高,节省空间,对个别微小颗粒的漏捕率低,工作状态稳定等优点 螺旋脱气除污器工作原理 1.自动排气阀保证不泄漏,不会关上。可选择螺纹连接一根排气管; 2.吊耳设计使得安装方便、容易; 3.气室独特设计使杂质不能进入自动排气阀; 4.该阀门能释放掉系统注水时产生的大量空气,并憋去浮渣; 5.多种可供选择的连接管径,焊,接或法兰连接; 6.污物颗粒的脱除不会影响液体的流速; 7.设备外壳坚固,使用寿命长; 8.螺旋管是其核心部分,螺旋管可脱除水中的微泡和微粒,对流体阻力很小; 9.大容量的沉渣室可减少频繁排污; 10.排污阀用于排放污物。 螺旋脱气除污器安装注意事项 1.设备必,须水平安装,安装时注意排气阀的方向,排气阀向上。 2.由于该设备工作过程中无运动部件,免维护,因此设计、安装时可根据现场实际情况布置。 3.设备进出口的管道上,应以靠近管口处设置管道支架;直接与容器管口相连接的大于或等于DN150的阀门下面宜设置支架。 4螺旋脱气除污器进出口均为国标法兰。设备进水口、出水口均需安装阀门。 螺旋脱气除污器使用说明 1.正常工作时,需开启进、出水阀门,关闭排污阀。 2.排污时打开排污阀,直到流出清水。 3.排污完毕后,关闭排污阀即可。 4.如排污压力不足,可关闭出水口处的阀门。 5.安装时应注意管道及水流方向。 6.平面布置需要流出管理人员操作空间。由于该设备工作过程无运动部件,即该设备免维护。但需保持入口负荷稳定,排污阀开闭用力均匀。避免人为损坏。 前言 螺旋脱气除污器(别名:螺旋空气杂质分离器)产品详情: 螺旋脱气除污器--连续不断工作,发挥双重功效的螺旋脱气除污器,通过一个装置起到的净化水系统中的气泡和杂质的功能。由于这个整合的举动,所有的气泡和微小的杂质将会脱除,保持系统不受气泡和杂质得困扰。它与传统的过滤器和除污器工作方式不同,维护很少。这个装置是否能够在供热系统里发挥它的作用取决于不同方面。 该连续不断工作,发挥双重功效的螺旋脱气除污器,通过这个装置可以起到净化水系统中的气泡和杂质的功能。由于这个整合的举动,所有的气泡和微小的杂质将会的脱除,保持系统不受气泡和杂质的困扰。它与传统的过滤器和除污器的工作方式不同,维护很少。这个装置能否在供热系统里发挥它的作用取决于不同的方面。脱水除污器安装在主线上,而且为系统温度。对于供热系统,位置是供热机组的出口。对于制冷系统,温度点在制冷机组的回水管上。 2 适用范围 螺旋除污器主要用来地下水和包括地下热水及其它水源中的固体颗粒及水中气体,在给水处理领域 除砂、降浊、固液分离、脱气等效果显著。 ● 脱除循环系统中的气泡和气团; ● 大幅减少系统注水后的调试时间,不需要额外的排气阀; ● 可在系统运行的情况下排除污物; ● 可以脱除小至5微米(=0.005MM)的污物杂质; ● 同类产品中的压降比; ● 不会造成不必要的系统停机; ● 广泛适用于不同压力,温度和材质; 3 产品特点 1、除污脱气效率高,清污方便,取消以往除污器前后阀门及旁通管,阻力小且恒定 不变等优点。 2、结构简单,成本低廉,易于安装和操作,几乎不需要维护。 3、增加了过滤单元(过滤精度可由用户选定)及脱气单元,具有除砂率高,脱气效率高,节省空间,对个别微小颗粒的漏捕率低,工作状态稳定等优点 4 技术参数 流速:≤1m/s 压力范围:0-10bar 工作温度:0-110摄氏度 流速:≤1m/s 压力范围:0-10bar 工作温度:0-110摄氏度 流速:≤1m/s 压力范围:0-10bar 工作温度:0-110摄氏度 W=焊,接口 F=法兰口 Dem.=可拆卸式 流速:≤1m/s 压力范围:0-10bar 工作温度:0-110摄氏度 W=焊,接口 F=法兰口 5 工作原理 1.自动排气阀保证不泄漏,不会关上。可选择螺纹连接一根排气管; 2.吊耳设计使得安装方便、容易; 3.气室独特设计使杂质不能进入自动排气阀; 4.该阀门能释放掉系统注水时产生的大量空气,并憋去浮渣; 5.多种可供选择的连接管径,焊,接或法兰连接; 6.污物颗粒的脱除不会影响液体的流速; 7.设备外壳坚固,使用寿命长; 8.特,有的螺旋管是其核心部分,螺旋管可脱除水中的小微泡和微粒,对流体阻力很小; 9.大容量的沉渣室可减少频繁排污; 10.排污阀用于排放污物。 6 安装示意图 A旁通阀 B进水阀 C出水阀 D设备 E放空阀 备注:此设备进出口方向可调换。 7安装注意事项 1.设备必,须水平安装,安装时注意排气阀的方向,排气阀向上。 2.由于该设备工作过程中无运动部件,免维护,因此设计、安装时可根据现场实际情况布置。 3.设备进出口的管道上,应以靠近管口处设置管道支架;直接与容器管口相连接的大于或等于DN150的阀门下面宜设置支架。 4螺旋脱气除污器进出口均为国标法兰。设备进水口、出水口均需安装阀门。 8 使用说明 1.正常工作时,需开启进、出水阀门,关闭排污阀。 2.排污时打开排污阀,直到流出清水。 3.排污完毕后,关闭排污阀即可。 4.如排污压力不足,可关闭出水口处的阀门。 5.安装时应注意管道及水流方向。 6.平面布置需要流出管理人员操作空间。由于该设备工作过程无运动部件,即该设备免维护。但需保持入口负荷稳定,排污阀开闭用力均匀。避免人为损坏。
    查看更多 +

联系我们

 

地       址:北京市丰台区西四环南路19号

工厂地址:河北省涿州市东仙坡镇下胡良村
电       话:13910080004(销售部刘经理)  15810931461(技术支持杨工)  13703324421(售后服务邸工)

传       真:0312-3893616
邮       箱:279029719@qq.com

关注公众号

imgboxbg

版权所有:北京勤诚创业科技有限公司  京ICP备10217083号-1  网站建设:中企动力 保定

MINGYUAN